The LEIA Beamline is suited for acceleration of ions with the use of the SYLOS Experimental Alignment (SEA) laser to cut-off energy up to 2MeV, at a repetition rate between shot-on-demand and 10Hz, and pulse durations from sub-two cycle onwards.
The beamline may be used for scientific experiments, supported by the beamline diagniostics as three Thomson ion spectrometers, a time-of-flight neutron detection system nTOF, and a bubble detector system.
Contact person |
Karoly Osvay |
---|
The LEIA beamline has been designed to study ion acceleration with ultrashort laser pulses [1] from single shot to kHz repetition rates. The study includes charge-mass characterisation of the particles with calibrated Thomson ion spectrometers [2], and spatial characterisation of the proton beams with the use of CR39 trace detectors [3]. Beyond the study of ion acceleration mechanisms, the ion beams can generate neutrons in a pitcher-catcher scheme, with the use of appropriate secondary targets.
The geometry of the interaction chamber at 45°shooting configuration, and with two Thomson ion spectrometers, and detection of the back-reflected energy of the laser pulse.
A single-shot target system is available, constructed from three translator stages using the PI’s VT-80 series.
Thomson ion spectrometers equipped with 3” diameter MCP (Photonis) and high resolution CCD cameras (EHD’s SCM825-M-TE)
Bubble detection system (BTI BDS)
Neutron ToF system (consisting of 4-4 plastic scintillators with EJ-230 and EJ-309 materials, respectively. Each detector is equipped with Hamamatsu R2038 PMD. Data acquisition via CAEN 1751C.)
Detection of the back-reflected laser energy as well as the transmitted laser energy is possible.
References
[1] S. Ter-Avetisyan, P. Varmazyar, P. K. Singh, J-G. Son, M. Fule, V. Y. Bychenkov, B. Farkas, K. Nelissen, S. Mondal, D. Papp, A. Borzsonyi, J. Csontos, Zs. Lecz, T. Somoskoi, L. Toth, Sz. Toth, V. Andriy, D. Margarone, A. Necas, G. Mourou, G. Szabo, K. Osvay, “Ion acceleration with few cycle relativistic laser pulses from foil targets”, Plasma Phys. Control. Fusion 65 (2023) 085012
https://doi.org/10.1088/1361-6587/acde0a
[2] P. Varmazyar, P. K. Singh, Z. Elekes, Z. Halász, B. Nagy, J. G. Son, J. Csontos, A. Mohacsi, K. Nelissen, T. Somoskői, R. E. Szabo, Sz Toth, S. Ter-Avetisyan, K. Osvay, “Calibration of Micro Channel Plate detector in a Thomson Spectrometer for Protons and Carbon Ions with Energies below 1 MeV“, Review of Scientific Instruments 93, (2022) 073301
https://doi.org/10.1063/5.0086747
[3] P. K. Singh, P. Varmazyar, B. Nagy, J. G. Son, S. Ter-Avetisyan, K. Osvay, “Low divergent MeV-class proton beam with micrometer source size driven by a few-cycle laser pulse”, Scientific Reports 12 (2022) 9754
https://doi.org/10.1038/s41598-022-12240-2
[4] Sz. Tóth, R. S. Nagymihály, I. Seres, L. Lehotai, J. Csontos, L. T. Tóth, P. P. Geetha, T. Somoskői, B. Kajla, D. Abt, V. Pajer, A. Farkas, Á. Mohácsi, Á. Börzsönyi, K. Osvay, “Single thin-plate compression of multi-TW laser pulses to 3.9 fs”, Optics Letters 48 (2023) 57-60
https://doi.org/10.1364/OL.478253